Reactions of Polyfluorinated 2-Arylhydrazono-3-oxocarboxylic Acid Esters with o-Phenylenediamine

O. G. Khudina, E. V. Shchegol'kov, Ya. V. Burgart, and V. I. Saloutin
Postovskii Institute of Organic Synthesis, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi/Akademicheskaya 22/20, Yekaterinburg, 620219 Russia
fax: (343)3745954; e-mail: saloutin@ios.uran.ru

Received January 10, 2004

Abstract

Polyfluorinated 2-arylhydrazono-3-oxocarboxylic acid esters react with o-phenylenediamine in neutral medium to give mainly the corresponding o-aminoanilides which can be converted into 1,5 -benzodi-azepin-2-ones. In the reactions with ethyl 2 -arylhydrazono-3-oxobutanoate and its 4,4-di- and 4,4,4-rifluoro derivatives, ethyl 2-(2-benzimidazolyl)-2-[(4-methylphenyl)hydrazono]ethanoate is also formed.

Depending on the conditions, fluorinated 3-oxocarboxylic acid esters, as well as their fluorine-free analogs, are capable of reacting with o-phenylenediamine at the keto group to give 3-arylaminocrotonates and/or 2-methylbenzimidazole [1, 2], at the ester group with formation of N-(2-aminophenyl)-3oxocarboxylic acid amides [1] and/or 3-(2-benz-imidazolyl)-1,1,1-trifluoroacetone [3], or at both these to afford 1,5-benzodiazepin-2-ones [1, 4]. 3-Oxocarboxylic acid esters having an alkyl [5], acetyl, or ethoxycarbonyl group [6, 7] or chlorine atom [8] in position 2 react with aromatic o-diamines according to the "acid" decomposition pattern which leads to formation of 2-(polyfluoroalkyl)benzimidazoles. Reactions of fluorine-free 2-arylhydrazono-3-oxobutanoates with 3-methylbenzene-1,2-diamine in o-xylene on heating give rise to substituted 1,5 -benzodiazepin- 2 ones which suppress the activity of the central nervous system [9].

The goal of the present work was to examine the reaction of fluorinated 2 -arylhydrazono-3-oxocarboxylic acid esters I with o-phenylenediamine. We have found that esters Ia-Ie do not react with o-phenylenediamine under mild conditions and that the reaction in boiling o-xylene or toluene involves the ester fragment to give the corresponding o-aminoanilides IIa-IIe as the major products (Scheme 1, path 1). The o-aminoanilide rather than cyclic 1,2,4,5-tetrahydro-1,5-benzodiazepine structure of compounds

IIa-IIe follows from the presence in their ${ }^{1} \mathrm{H}$ NMR spectra of signals from protons of a primary amino group ($\delta 3.85-5.35 \mathrm{ppm}$); in the IR spectra we observed absorption bands due to symmetric and antisymmetric stretching vibrations of that group at 3340$3420 \mathrm{~cm}^{-1}$ (see Experimental).

Amides II can be converted into 1,5 -benzodi-azepin-2-ones III by heating in boiling o-xylene for a long time. In such a way, from o-aminoanilides IIb and IId we obtained 4-fluoroalkyl-1 H-1,5-benzodi-azepine-2,3-dione 3-arylhydrazones IIIa and IIIb (Scheme 1). It should be noted that small amounts of compounds IIIa and IIIb are formed directly in the reactions of esters $\mathbf{I b}$ and $\mathbf{I d}$ with o-phenylenediamine (according to the TLC data).

The NMR and IR spectral data of compounds IIIa and IIIb indicate that they exist in solution and in crystal as a single tautomer, namely hydrazone-amide. The formation of intramolecular hydrogen bond in IIIa and IIII is confirmed by the reduced frequency of the amide carbonyl absorption (1630-1640 cm^{-1}) in the IR spectrum and by the presence of a downfield broadened singlet from the hydrazone proton (δ 12.4814.24 ppm) in the ${ }^{1} \mathrm{H}$ NMR spectrum (see Experimental).

Apart from amide IIc, the reaction of ester Ic with o-phenylenediamine gave N, N 'phenylenediamide IV as a result of subsequent condensation of product IIc at the ester group of the second molecule of ester Ic.

Scheme 1.

Ia, IIa, $\mathrm{R}=\mathrm{Et}, \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{~F}_{13} ; \mathbf{I d}, \mathbf{I I d}, \mathbf{I I I b}, \mathrm{R}=\mathrm{Et}, \mathrm{R}^{\prime}=\mathrm{HCF}_{2} ; \mathbf{I e}, \mathbf{I I e}, \mathrm{R}=\mathrm{Et}, \mathrm{R}^{\prime}=\mathrm{Me} ; \mathbf{I f}, \mathrm{R}=\mathrm{Et}, \mathrm{R}^{\prime}=\mathrm{CF}_{3} ; \mathbf{I b}, \mathbf{I I b}, \mathbf{I I I a}, \mathrm{R}=\mathrm{Me}$, $R^{\prime}=\mathrm{C}_{4} \mathrm{H}_{9} ;$ Ic, IIc, $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}\left(\mathrm{CF}_{2}\right)_{2}$.

Unlike esters Ia-Ic which contain a "long" polyfluorinated alkyl group (tridecafluorohexyl, nonafluorobutyl, or tetrafluoroethyl), esters Id and Ie having a "short" difluoromethyl moiety react with o-phenylenediamine in boiling o-xylene according to both path l (to give o-aminoanilides IId and IIe) and path 2, i.e., at the difluoroacetyl group. In these reactions, we also isolated ethyl 2-(2-benzimidazolyl)-2-(arylhydrazono)acetate (V) (Scheme 1). Compound \mathbf{V} is likely to be formed by cyclization of intermediate 3-(arylimino)butanoate \mathbf{A} at the $\mathrm{C}=\mathrm{N}$ bond adjacent to the difluoromethyl group. The resulting 2,2-disubstituted dihydrobenzimidazole \mathbf{B} readily undergoes aromatization via elimination of difluoromethane molecule to afford ethyl 2-(2-benzimidazolyl)-2-(arylhydrazono)ethanoate (V).

It should be noted that the reaction of trifluoro-methyl-substituted ester If with o-phenylenediamine
gave a mixture of products, from which we succeeded in isolating only a small amount of ester \mathbf{V}. This fact can be regarded as an indirect evidence for reduced selectivity of reactions with esters having a short-chain fluoroalkyl group.

Theoretically, 1,5-benzodiazepin-2-ones III could be formed by cyclization of not only o-aminoanilides II but also 3-(arylimino)butanoates A. However, we failed to detect the latter by TLC. The chromatograms contained spots belonging to initial esters \mathbf{I}, o-aminoanilides II, and benzimidazole V. Probably, the transformation of intermediates like A into benzimidazole \mathbf{V} is very fast. On the other hand, we have shown that benzodiazepines III can be obtained from o-aminoanilides II.

Thus the presence of a bulky polyfluoroalkyl group in esters Ia-Ic favors their selective reaction with o-phenylenediamine at the ester group, whereas esters

Id-If having di- and trifluoroacetyl moieties react both at the ester and at the fluoroacetyl group.

We also made an attempt to effect reaction of ester Ib with o-phenylenediamine in acid medium. No reaction occurred in methanol containing a catalytic amount of acetic acid. When methanol was replaced by 1-butanol, a mixture of products was obtained, which we failed to separate. Likewise, the use of a template procedure was unsuccessful. Ester Ic did not react with o-phenylenediamine on heating in boiling ethanol in the presence of nickel acetate.

We can conclude that esters I react with o-phenylenediamine in neutral medium (boiling toluene or o-xylene) predominantly at the ester group, yielding the corresponding o-aminoanilides. However, this reaction pathway is not the only possible in the case of ethyl 2-(arylhydrazono)acetoacetate and its di- and trifluoro analogs. These compounds also give rise to ethyl 2-(2-benzimidazolyl)-2-(arylhydrazono)acetate as a result of concurrent addition of o-phenylenediamine at the (fluoro)acetyl group and partial decomposition. The latter process was unexpected; according to published data [2,5-8], reactions of 3-oxo esters and their 2 -alkyl, acetyl, ethoxycarbonyl, and chloro derivatives with o-phenylenediamine were accompanied only by "acid" cleavage with formation of 2-(fluoroalkyl)benzimidazoles.

EXPERIMENTAL

The IR spectra were recorded on a Perkin-Elmer Spectrum One Fourier spectrometer in the range from 400 to $4000 \mathrm{~cm}^{-1}$; samples were prepared as mulls in mineral oil. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Bruker DRX-400 spectrometer at 400 and 100.6 MHz , respectively; the chemical shifts were measured relative to tetramethylsilane. The ${ }^{19} \mathrm{~F}$ NMR spectra were measured on a Tesla BS-587A instrument (75 MHz) relative to $\mathrm{C}_{6} \mathrm{~F}_{6}$. The elemental analyses were obtained on a Carlo Erba CHNS-O EA 1108 analyzer. The mass spectra were run on a Varian MAT311A mass spectrometer.

Esters I were synthesized by the procedure described in [10]; newly synthesized compounds Ia-Id and If were characterized by spectral data.

Ethyl 2-[(4-methylphenyl)hydrazono]-3-oxo-4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononanoate (Ia). Yield 53%, yellow powder, mp $50-52^{\circ} \mathrm{C}$ (from ethanol). IR spectrum, $v, \mathrm{~cm}^{-1}: 3100,1590$ (NH); 1705, 1660 ($\mathrm{C}=\mathrm{O}$); 1530 ($\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}$); 1120-1240
(C-F). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 1.42 \mathrm{t}(3 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 2.37 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 4.40 \mathrm{q}(2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 7.22-7.31 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 13.55 br.s $(1 \mathrm{H}, \mathrm{NH}) .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta_{\mathrm{F}}$, ppm: $35.73 \mathrm{~m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right), 39.12 \mathrm{~m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right), 40.57 \mathrm{~m}$ $\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right), 41.89 \mathrm{~m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right), 50.34 \mathrm{~m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right)$, $81.01 \mathrm{~m}\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. Found, \%: C 39.40; H 2.31; F 44.70; N 5.12. $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}$. Calculated, \%: C 39.15; H 2.37; F 44.72; N 5.07.

Methyl 2-[(4-methylphenyl)hydrazono]-3-oxo-4,4,5,5,6,6,7,7,7-nonafluoroheptanoate (Ib). Yield 72%, yellow powder, mp $94-96^{\circ} \mathrm{C}$ (from ethanol). IR spectrum, $v, \mathrm{~cm}^{-1}: 3070,1585(\mathrm{NH}) ; 1680,1660$ (C=O); 1640, 1520, 1500 (C=N, C=C); 1115-1225 (C-F). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: 2.38 s ($3 \mathrm{H}, \mathrm{Me}$), $3.94 \mathrm{~s}(3 \mathrm{H}, \mathrm{OMe}), 7.23-7.32 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 13.55 br.s $(1 \mathrm{H}, \mathrm{NH}) .{ }^{19} \mathrm{~F}$ NMR spectrum (acetone- d_{6}), $\delta_{\mathrm{F}}, \mathrm{ppm}: 38.92 \mathrm{~m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right), 43.39 \mathrm{~m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right)$, $52.77 \mathrm{~m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right), 82.80 \mathrm{~m}\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. Found, $\%$: C 41.20; H 2.53; F 38.83; N 6.35. $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{9} \mathrm{~N}_{2} \mathrm{O}_{3}$. Calculated, \%: C 41.11; H 2.53; F 39.02; N 6.39.

Methyl 2-[(4-methylphenyl)hydrazono]-3-oxo-4,4,5,5-tetrafluoropentanoate (Ic). Yield 66%, yellow powder, $\mathrm{mp} 79-80^{\circ} \mathrm{C}$ (from ethanol). IR spectrum, v, cm ${ }^{-1}$: 3130, $1580(\mathrm{NH}) ; 1680,1660(\mathrm{C}=\mathrm{O})$; 1640, 1520, 1500 (C=N, C=C); 1070-1230 (C-F). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 2.38 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me})$, $3.93 \mathrm{~s}(3 \mathrm{H}, \mathrm{OMe}), 6.34 \mathrm{t} . \mathrm{t}\left[1 \mathrm{H}, \mathrm{H}\left(\mathrm{CF}_{2}\right)_{2},{ }^{2} J_{\mathrm{HF}}=53.2\right.$, ${ }^{3} J_{\mathrm{HF}}=5.6 \mathrm{~Hz}, 7.24-7.30 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 13.48 \mathrm{br} . \mathrm{s}$ $(1 \mathrm{H}, \mathrm{NH}) .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta_{\mathrm{F}}, \mathrm{ppm}$: 24.59 d.t $\left(2 \mathrm{~F}, \mathrm{HCF}_{2},{ }^{2} J_{\mathrm{FH}}=53.2,{ }^{3} J_{\mathrm{FF}}=7.9 \mathrm{~Hz}\right)$, $42.20 \mathrm{~m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right)$. Found, \%: C 48.82; H 3.78; F 23.58; N 8.71. $\mathrm{C}_{13} \mathrm{~N}_{12} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}$. Calculated, \%: C 48.76; H 3.78; F 23.73; N 8.75.

Ethyl 2-[(4-methylphenyl)hydrazono]-3-oxo-4,4difluorobutanoate (Id). Yield 54%, yellow powder, $\mathrm{mp} 96-98^{\circ} \mathrm{C}$ (from ethanol). IR spectrum, $v, \mathrm{~cm}^{-1}$: 3180, 1580 (NH); 1690 (C=O); 1640, 1520, 1500 ($\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}$); 1110-1220 (C-F). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 1.42 \mathrm{t}\left(3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right)$, $2.38 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 4.41 \mathrm{q}\left(2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right)$, $6.70 \mathrm{t}\left(1 \mathrm{H}, \mathrm{CHF}_{2},{ }^{2} J_{\mathrm{HF}}=54.3 \mathrm{~Hz}\right), 7.22-7.28 \mathrm{~m}$ $\left(4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 13.45$ br.s $(1 \mathrm{H}, \mathrm{NH}) .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: $34.44 \mathrm{~d}\left(2 \mathrm{~F}, \mathrm{CHF}_{2},{ }^{2} J_{\mathrm{FH}}=54.3 \mathrm{~Hz}\right)$. Found, \%: C 54.89; H 4.99; F 13.38; N 9.80. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$. Calculated, \%: C 54.93; H 4.96; F 13.37; N 9.85 .

Ethyl 2-[(4-methylphenyl)hydrazono]-3-oxo-4,4,4-trifluorobutanoate (If). Yield 41%, yellow powder, $\mathrm{mp} 75-76^{\circ} \mathrm{C}$ (from ethanol). IR spectrum, v,
$\mathrm{cm}^{-1}: 3100,1590(\mathrm{NH}) ; 1690(\mathrm{C}=\mathrm{O}) ; 1630,1520$, 1500 ($\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}$); 1080-1200 (C-F). ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}) (mixture of isomers Ia and Ia', $\sim 10: 3]$, δ, ppm: Ia: $1.28 \mathrm{t}\left(3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right.$), $2.28 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 4.30 \mathrm{q}\left(2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right)$, $7.18-7.36 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 11.65 \mathrm{br}$.s ($1 \mathrm{H}, \mathrm{NH}$); Ia': $1.30 \mathrm{t}\left(3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right.$, $2.30 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me})$, $4.25 \mathrm{q}\left(2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right), 7.22-7.43 \mathrm{~m}$ ($4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), 14.36 br.s ($1 \mathrm{H}, \mathrm{NH}$). Found, \%: C 51.89 ; H 4.59; F 18.58; N 9.15. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$. Calculated, \%: C 51.66; H 4.34; F 18.86; N 9.27.

Reaction of esters Ia-If with o-phenylenediamine (general procedure). o-Phenylenediamine, 108 mg (1 mmol), was added to a solution of 1 mmol of ester Ia-If in 10 ml of o-xylene (compounds Ia-Id) or toluene ($\mathbf{I} \mathbf{e}, \mathbf{I f}$), and the mixture was heated for 20 h under reflux and evaporated to dryness.
N-(2-Aminophenyl)-2-[(4-methylphenyl)hydra-zono]-3-oxo-4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononanamide (IIa). The product was isolated by column chromatography on silica gel (40-100 $\mu \mathrm{m}$) using chloroform as eluent. Yield 418 mg (68%), yellow powder, $\mathrm{mp} 132-133^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}$: 3420, 3340, 3250, 1600 (NH); 1670 (C=O); 1630, 1550, 1520 ($\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}$); 1150-1240 (C-F). ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{DMSO}-d_{6}$), δ, ppm: $2.32 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me})$, 5.35 br.s $\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.59-7.47 \mathrm{~m}\left(8 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 9.82 br.s and 13.00 br.s $(2 \mathrm{H}, 2 \mathrm{NH})$. Found, $\%$: C 43.18; H 2.27; F 40.08; N 9.03. $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{13} \mathrm{~N}_{4} \mathrm{O}_{2}$. Calculated, \%: C 43.01; H 2.46; F 40.20; N 9.12.
\boldsymbol{N}-(2-Aminophenyl)-2-[(4-methylphenyl)hydra-zono]-3-oxo-4,4,5,5,6,6,7,7,7-nonafluoroheptanamide (IIb). Yield 329 mg (64%), yellow powder, $\mathrm{mp} 146-148^{\circ} \mathrm{C}$ (from benzene). IR spectrum, $v, \mathrm{~cm}^{-1}$: 3410, 3340, 3250, 1580 (NH); 1650 (C=O); 1535, 1500 ($\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}$); 1115-1215 (C-F). ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- $\left.d_{6}-\mathrm{CCl}_{4}\right), \delta, \mathrm{ppm}: 2.37 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me})$, 4.83 br.s $\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.58-7.44 \mathrm{~m}\left(8 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 9.88 br.s and 14.95 br.s $(2 \mathrm{H}, 2 \mathrm{NH}) .{ }^{19} \mathrm{~F}$ NMR spectrum (DMSO- $\left.d_{6}-\mathrm{CCl}_{4}\right), \delta_{\mathrm{F}}$, ppm: $37.46 \mathrm{~m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right)$, $42.18 \mathrm{~m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right), 52.34 \mathrm{~m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right), 81.80 \mathrm{~m}(3 \mathrm{~F}$, CF_{3}). Found, \%: C 46.39; H 2.94; F 33.64; N 10.86. $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~F}_{9} \mathrm{~N}_{4} \mathrm{O}_{2}$. Calculated, \%: С 46.70; H 2.94; F 33.24; N 10.89 .
N-(2-Aminophenyl)-2-[(4-methylphenyl)hydra-zono]-3-oxo-4,4,5,5-tetrafluoropentanamide (IIc). The product was isolated by column chromatography on silica gel $(100-250 \mu \mathrm{~m})$ using chloroform as eluent. Yield 150 mg (38%), yellow powder, $\mathrm{mp} 146-148^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 3410,3350,3240,3200,1600$
(NH) ; 1660 (C=O); 1640 sh, $1580,1550,1500$ ($\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}$) ; 1070-1230 (C-F). ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), $\delta, \mathrm{ppm}: 2.33 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 5.16 \mathrm{br} . \mathrm{s}(2 \mathrm{H}$, $\left.\mathrm{NH}_{2}\right), 6.61-7.47 \mathrm{~m}\left(8 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.91$ t.t $\left[1 \mathrm{H}, \mathrm{H}\left(\mathrm{CF}_{2}\right)_{2}\right.$, $\left.{ }^{2} J_{\mathrm{HF}}=52.0,{ }^{3} J_{\mathrm{HF}} 5.5=\mathrm{Hz}\right], 9.91$ br.s and 14.50 br. s $(2 \mathrm{H}, 2 \mathrm{NH}) .{ }^{19} \mathrm{~F}$ NMR spectrum (DMSO- d_{6}), δ_{F}, ppm: 24.09 d.t $\left(2 \mathrm{~F}, \mathrm{CHF}_{2},{ }^{2} J_{\mathrm{FH}}=52.0,{ }^{3} J_{\mathrm{FF}}=9.7 \mathrm{~Hz}\right)$, $46.75 \mathrm{~m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right)$. Found, \%: C 54.48; H 4.07; F 19.08; N 14.03. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}$. Calculated, \%: C 54.55; H 4.07; F 19.17; N 14.14.
N-(2-Aminophenyl)-2-[(4-methylphenyl)hydra-zono]-3-0xo-4,4-difluorobutanamide (IId). The product was isolated by column chromatography on silica gel $(40-100 \mu \mathrm{~m})$ using chloroform as eluent. Yield $177 \mathrm{mg}(51 \%)$, yellow powder, $\mathrm{mp} 140-142^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 3410,3340,3250,1590(\mathrm{NH})$; 1650 ($\mathrm{C}=\mathrm{O}$); 1620, 1580, $1500(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C})$; 1120-$1230(\mathrm{C}-\mathrm{F})$. ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{DMSO}-d_{6}$), δ, ppm: $2.33 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 4.90$ br.s $\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.57-7.47 \mathrm{~m}$ $\left(8 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.81 \mathrm{t}\left(1 \mathrm{H}, \mathrm{CHF}_{2},{ }^{2} J_{\mathrm{HF}}=51.6 \mathrm{~Hz}\right)$, 9.85 br.s and 14.20 br.s $(2 \mathrm{H}, 2 \mathrm{NH})$. Found, \%: C 58.68; H 4.47; F 11.08; N 9.03. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$. Calculated, \%: C 58.96; H 4.66; F 10.97; N 9.24.
\boldsymbol{N}-(2-Aminophenyl)-2-[(4-methylphenyl)hydra-zono]-3-oxobutanamide (IIe). Yield 186 mg (60\%), yellow crystals, mp $161-162^{\circ} \mathrm{C}$ (from benzene). IR
 $1650(\mathrm{C}=\mathrm{O})$; 1550, $1520(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 2.36 \mathrm{~s}$ and $2.59 \mathrm{~s}(6 \mathrm{H}$, $2 \mathrm{Me}), 3.85$ br.s $\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.81-7.43 \mathrm{~m}\left(8 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 11.11 br.s and 14.72 br.s $(2 \mathrm{H}, 2 \mathrm{NH})$. Found, \%: C 65.76; H 5.71; N 18.12. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$. Calculated, \%: C 65.79; H 5.85; N 18.05.
N, N^{\prime}-(1,2-Phenylene)-bis[2-(4-methylphenyl)-hydrazono-3-oxo-4,4,5,5-tetrafluoropentanamide] (IV) was isolated by column chromatography on silica gel ($100-250 \mu \mathrm{~m}$) using chloroform as eluent. Yield $171 \mathrm{mg}(25 \%)$, yellow powder, mp $144-146^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 3350,3265,1560(\mathrm{NH}) ; 1680 \mathrm{sh}$, 1660 ($\mathrm{C}=\mathrm{O}$); 1595, 1555, 1500 ($\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}$); 10901235 (C-F). ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{DMSO}-d_{6}$) (mixture of tautomers IV and IV', $\sim 17: 3$), δ, ppm: IV: 2.33 s $(6 \mathrm{H}, 2 \mathrm{Me}), 6.77$ t.t $\left(2 \mathrm{H}, 2 \mathrm{CHF}_{2},{ }^{2} J_{\mathrm{HF}}=52.2,{ }^{3} J_{\mathrm{HF}}=\right.$ $5.5 \mathrm{~Hz}), 7.29-7.81 \mathrm{~m}\left(12 \mathrm{H}, 3 \mathrm{C}_{6} \mathrm{H}_{4}\right), 10.48 \mathrm{~s}$ and $14.48 \mathrm{~s}(4 \mathrm{H}, 4 \mathrm{NH}) ; \mathbf{I V}^{\prime}: 2.36 \mathrm{~s}(6 \mathrm{H}, 2 \mathrm{Me}), 7.01 \mathrm{t} . \mathrm{t}$ $\left(2 \mathrm{H}, 2 \mathrm{CHF}_{2},{ }^{2} J_{\mathrm{HF}}=52.6,{ }^{3} J_{\mathrm{HF}}=5.5 \mathrm{~Hz}\right), 7.33-7.83 \mathrm{~m}$ $\left(12 \mathrm{H}, 3 \mathrm{C}_{6} \mathrm{H}_{4}\right), 10.48 \mathrm{~s}$ and $14.15 \mathrm{~s}(4 \mathrm{H}, 4 \mathrm{NH})$. Mass spectrum, $m / z\left(I_{\mathrm{rel}}, \%\right): 685(24.1)[M+1]^{+}, 684$ (70) $[M]^{+\cdot}, 396$ (25.4), 289 (22.1) [$\mathrm{H}_{\left(\mathrm{CF}_{2}\right)_{2} \mathrm{CO}-~}^{\text {CO }}$ $\left.\left(\mathrm{C}=\mathrm{NNHC}_{6} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{CO}\right]^{+}, 277$ (11.6), 276 (82.9), 135
(14.2), 134 (33.5), 121 (19.5), 119 (19.5) [$\mathrm{N}=\mathrm{NC}_{6} \mathrm{H}_{4}{ }^{-}$ $\mathrm{Me}]^{+}, 108$ (66.1), 107 (100), 106 (78.3) [$\mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{Me}^{+}$, 105 (22.1), 91 (66.1) $\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}^{+}, 79\right.$ (18.4), 77 (11) $\left[\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}$. Found, \%: C 52.92; H 3.58; F 21.98; N 12.41. $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~F}_{8} \mathrm{~N}_{6} \mathrm{O}_{4}$. Calculated, \%: C 52.64; H 3.53; F 22.20; N 12.28 .

Ethyl 2-(2-benzimidazolyl)-2-[(4-methylphenyl)hydrazonolethanoate (V). Yield 64 mg (20%; from Id), $74 \mathrm{mg}(23 \%$; from Ie), $81 \mathrm{mg}(25 \%$; from If); yellow powder, $\mathrm{mp} 218-220^{\circ} \mathrm{C}$. The product was purified by column chromatography using chloroform as eluent and washed with ethanol. IR spectrum, v, $\mathrm{cm}^{-1}: 3380,1575(\mathrm{NH}) ; 1650\left(\mathrm{CO}_{2} \mathrm{Et}\right) ; 1605,1535$, 1500 ($\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- $d_{6}-$ $\left.\mathrm{CCl}_{4}\right), \delta, \mathrm{ppm}: 1.44 \mathrm{t}\left(3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right)$, $2.35 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 4.41 \mathrm{q}\left(2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right)$, $7.19-7.72 \mathrm{~m}\left(8 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 12.32 \mathrm{br}$.s and 15.09 br.s $(2 \mathrm{H}, 2 \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR spectrum (DMSO- $d_{6}-\mathrm{CCl}_{4}$), δ_{C}, ppm: $14.26,20.49,60.51,112.77,114.95,116.56$, $118.24,122.14,123.59,129.82,132.00,132.66$, $140.20,140.63,145.85,164.49$. Mass spectrum, m / z $\left(I_{\text {rel }}, \%\right): 324$ (21.7) $[M+1]^{+}, 323$ (100) $[M]^{+}, 250$ (17.2) $\left[M-\mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 249$ (19.9), 159 (10.1), 147 (19.1), 144 (55.6), 119 (9.4) [$\left.\mathrm{N}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}\right]^{+}, 118$ (9.8) $\left[M-\mathrm{EtO}_{2} \mathrm{CC}=\mathrm{NNHC}_{6} \mathrm{H}_{4} \mathrm{Me}^{+}, 106\right.$ (10.6) [$\mathrm{NH}-$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}^{+}, 105$ (43.4), 91 (28.1) $\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}^{+}, 77\right.$ (10) $\left[\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}$. Found, \%: C 66.63; H 5.51; N 17.23. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$. Calculated, \%: C 67.06; H 5.63; N 17.38.

4-Substituted 3-(4-methylphenyl)hydrazono-2,3-dihydro- $\mathbf{1 H}$-1,5-benzodiazepin-2-ones IIIa and IIIb (general procedure). A solution of 1 mmol of o-aminoanilide IIb or IId in 10 ml of o-xylene was heated for 40 h under reflux and was then evaporated to dryness.

3-(4-Methylphenyl)hydrazono-4-nonafluoro-butyl-2,3-dihydro-1H-1,5-benzodiazepin-2-one (IIIa). Yield 279 mg (85\%), yellow crystals, mp 203$205^{\circ} \mathrm{C}$ (from chloroform). IR spectrum, $v, \mathrm{~cm}^{-1}: 3375$, 1580 (NH); 1640 (C=O); 1605, 1535, 1500 (C=N, $\mathrm{C}=\mathrm{C}$) ; 1115-1220 (C-F). ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- $d_{6}-\mathrm{CCl}_{4}$), δ, ppm: $2.38 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 7.27-$ 7.33 m and $7.53-7.79 \mathrm{~m}\left(8 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 14.24$ br.s $(2 \mathrm{H}$, 2 NH). ${ }^{19}$ F NMR spectrum (DMSO- $d_{6}-\mathrm{CCl}_{4}$), δ_{F}, ppm: $37.35 \mathrm{~m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right), 41.75 \mathrm{~m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right), 52.13 \mathrm{~m}(2 \mathrm{~F}$, $\left.\mathrm{CF}_{2}\right), 81.76 \mathrm{~m}\left(3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. Found, \%: C 48.46; H 2.43;

F 34.64; N 11.25. $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~F}_{9} \mathrm{~N}_{4} \mathrm{O}$. Calculated, \%: C 48.40; H 2.64; F 34.45; N 11.29.

4-Difluoromethyl-3-(4-methylphenyl)hydrazono-2,3-dihydro-1H-1,5-benzodiazepin-2-one (IIIb). Yield 273 mg (83%), yellow crystals, $\mathrm{mp} 216-217^{\circ} \mathrm{C}$ (from chloroform). IR spectrum, $v, \mathrm{~cm}^{-1}: 3290$, 3180, 1575 (NH); 1630 (C=O); 1555, 1500, 1490 ($\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}$); $1125-1260(\mathrm{C}-\mathrm{F}) .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO- $\left.d_{6}-\mathrm{CCl}_{4}\right), \delta, \mathrm{ppm}: 2.30 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 6.71 \mathrm{t}$ $\left(1 \mathrm{H}, \mathrm{CHF}_{2},{ }^{2} J_{\mathrm{HF}}=54.9 \mathrm{~Hz}\right), 7.09-7.32 \mathrm{~m}\left(8 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 10.41 br.s and 12.48 br.s ($2 \mathrm{H}, 2 \mathrm{NH}$). ${ }^{19} \mathrm{~F}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta_{\mathrm{F}}$, ppm: $42.66 \mathrm{~d}\left(2 \mathrm{~F}, \mathrm{CHF}_{2},{ }^{2} J_{\mathrm{FH}}=\right.$ 54.9 Hz). Found, \%: C 61.88; H 4.23; F 11.43; N 17.07. $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}$. Calculated, \%: C 62.19; H 4.30; F 11.57; N 17.07.

This study was performed under financial support by the Russian Foundation for Basic Research (project nos. 03-03-33118 and 03-03-06471) and by the State Program for Support of Leading Scientific Schools (project no. 1766.2003.3).

REFERENCES

1. Davoll, J., J. Chem. Soc., 1960, p. 308.
2. Lopyrev, V.A., Shibanova, E.F., Titova, I.A., Evdokimova, E.S., and Voronkov, M.G., Zh. Org. Khim., 1981, vol. 17, p. 2623.
3. Wigton, F.V. and Joullie, M.M., J. Am. Chem. Soc., 1959, vol. 81, p. 5212.
4. Saloutin, V.I., Fomin, A.N., and Pashkevich, K.I., Izv. Akad. Nauk SSSR, Ser. Khim., 1985, p. 144.
5. Solomko, Z.F., Tkachenko, V.S., Kost, A.N., Budylin, V.A., and Pikalov, V.L., Khim. Geterotsikl. Soedin., 1975, p. 533.
6. Pashkevich, K.I., Krokhalev, V.M., and Saloutin, V.I., Izv. Akad. Nauk SSSR, Ser. Khim., 1988, p. 1367.
7. Kaupp, G., Frey, H., and Bechmann, G., Synthesis, 1985, p. 555.
8. Baxter, R.A. and Spring, F.S., J. Chem. Soc., 1945, p. 229.
9. Tantawy, A.S., El-Ashmawy, M.B., El-Kerdawy, M.M., and Mansoura, J., Pharm. Sci., 1989, vol. 5, p. 118; Chem. Abstr., 1990, vol. 112, no. 158210j.
10. Burgart, Ya.V., Fokin, A.S., Kuzueva, O.G., Chupakhin, O.N., and Saloutin, V.I., J. Fluorine Chem., 1998, vol. 92, p. 101.
